
GigaScience

Bionitio: demonstrating and facilitating best practices for bioinformatics command-line
software

--Manuscript Draft--

Manuscript Number: GIGA-D-19-00145

Full Title: Bionitio: demonstrating and facilitating best practices for bioinformatics command-line
software

Article Type: Technical Note

Funding Information:

Abstract: Background

Bioinformatics software tools are often created ad hoc, frequently by people without
extensive training in software development. On the other hand, the barrier to entry in
bioinformatics software development is high for beginners, especially if they want to
adopt good programming practices. Even experienced developers do not always follow
best practices in all the code they develop. A consequence of this is the proliferation of
poorer-quality bioinformatics software, leading to limited scalability and inefficient use
of resources; lack of reproducibility, usability, adaptability and interoperability; and
erroneous or inaccurate results.

Findings

In response to this problem we have developed Bionitio, a tool that automates the
process of starting new bioinformatics software projects following recommended best-
practices. With a single command, the user can create a new well-structured project in
one of twelve programming languages. The resulting software is functional, carrying
out a prototypical bioinformatics task, and thus serves as both a working example and
a template for building new tools. Key features include command line argument
parsing, error handling, progress logging, defined exit status values, a test suite, a
version number, standardised building and packaging, user documentation, code
documentation, a standard open-source software license, and software revision
control.

Conclusions

Bionitio serves as a learning aid for beginner-to-intermediate bioinformatics
programmers and provides an excellent starting point for new projects. This helps
developers adopt good programming practices from the beginning of a project and
encourages high-quality tools to be developed more rapidly. This also benefits users of
the tools because they are more easily installed and consistent in their usage. Bionitio
is released as open source software under the MIT License, and is available at
https://github.com/bionitio-team/bionitio.

Corresponding Author: Bernie Pope, Ph.D.
The University of Melbourne, Australia
AUSTRALIA

Corresponding Author Secondary
Information:

Corresponding Author's Institution: The University of Melbourne, Australia

Corresponding Author's Secondary
Institution:

First Author: Bernard Pope, Ph.D.

First Author Secondary Information:

Order of Authors: Bernard Pope, Ph.D.

Peter Georgeson

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Anna Syme

Clare Sloggett

Jessica Chung

Harriet Dashnow

Michael Milton

Andrew Lonsdale

David Powell

Torsten Seemann

Order of Authors Secondary Information:

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

1

Bionitio: demonstrating and facilitating

best practices for bioinformatics

command-line software

Peter Georgeson: Melbourne Bioinformatics, The University of Melbourne, Melbourne,

Victoria, Australia. Department of Clinical Pathology, The University of Melbourne, Australia,

peter.georgeson@unimelb.edu.au

Anna Syme: Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria,

Australia. Royal Botanic Gardens Melbourne, Victoria, Australia. anna.syme@rbg.vic.gov.au

Clare Sloggett: Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria,

Australia. sloc@unimelb.edu.au

Jessica Chung: Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria,

Australia. jchung@unimelb.edu.au

Harriet Dashnow: Bioinformatics, Murdoch Children’s Research Institute, Royal Children’s

Hospital, Parkville, Victoria, Australia and School of BioSciences, The University of

Melbourne, Melbourne, Victoria, Australia. harriet.dashnow@mcri.edu.au

Michael Milton: Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria,

Australia. michael.milton@unimelb.edu.au

Manuscript Click here to download Manuscript bionitio_manuscript.docx

https://www.editorialmanager.com/giga/download.aspx?id=64884&guid=e810fcd1-8325-4b95-ab9e-4f26ff5b8014&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=64884&guid=e810fcd1-8325-4b95-ab9e-4f26ff5b8014&scheme=1

2

Andrew Lonsdale: ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The

University of Melbourne, Parkville, Victoria, Australia and Bioinformatics, Murdoch Children’s

Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia.

andrew.lonsdale@lonsbio.com.au

David Powell: Monash Bioinformatics Platform, Biomedicine Discovery Institute, Faculty of

Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.

david.powell@monash.edu

Torsten Seemann: Melbourne Bioinformatics, The University of Melbourne, Melbourne,

Victoria, Australia; Department of Microbiology and Immunology, Doherty Institute for

Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.

t.seemann@unimelb.edu.au

Bernard Pope: Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria,

Australia. Department of Clinical Pathology, The University of Melbourne, Australia.

Department of Medicine, Central Clinical School, Monash University, Australia.

bjpope@unimelb.edu.au. (* Corresponding author)

Abstract

Background

Bioinformatics software tools are often created ad hoc, frequently by people without

extensive training in software development. On the other hand, the barrier to entry in

bioinformatics software development is high for beginners, especially if they want to adopt

good programming practices. Even experienced developers do not always follow best

3

practices in all the code they develop. A consequence of this is the proliferation of poorer-

quality bioinformatics software, leading to limited scalability and inefficient use of resources;

lack of reproducibility, usability, adaptability and interoperability; and erroneous or inaccurate

results.

Findings

In response to this problem we have developed Bionitio, a tool that automates the process of

starting new bioinformatics software projects following recommended best-practices. With a

single command, the user can create a new well-structured project in one of twelve

programming languages. The resulting software is functional, carrying out a prototypical

bioinformatics task, and thus serves as both a working example and a template for building

new tools. Key features include command line argument parsing, error handling, progress

logging, defined exit status values, a test suite, a version number, standardised building and

packaging, user documentation, code documentation, a standard open-source software

license, and software revision control.

Conclusions

Bionitio serves as a learning aid for beginner-to-intermediate bioinformatics programmers

and provides an excellent starting point for new projects. This helps developers adopt good

programming practices from the beginning of a project and encourages high-quality tools to

be developed more rapidly. This also benefits users of the tools because they are more

easily installed and consistent in their usage. Bionitio is released as open source software

under the MIT License, and is available at https://github.com/bionitio-team/bionitio.

Keywords

bioinformatics, software development, best practices, training

https://github.com/bionitio-team/bionitio

4

Findings

Background

Software development is a central part of Bioinformatics, spanning a wide gamut of activities

including data transformation, scripting, workflows, statistical analysis, data visualisation,

and the implementation of core analytical algorithms. However, despite the critical and far-

reaching nature of this work, there is a high degree of variability in the quality of

bioinformatics software tools being developed, reflecting a broader trend across all scientific

disciplines [1–3].

A common approach to defining software quality is to consider how well it meets its

requirements. These can be functional - identifying what the software should do, and non-

functional - identifying how it should work. Given the results-driven nature of research, the

functional aspects of scientific programs (e.g. correctness) are heavily emphasised at the

expense of the non-functional ones (e.g. usability, maintainability, interoperability, efficiency)

[4]. Additionally, the highly complex and evolving nature of scientific software can make

requirements specifications infeasible, and therefore they are rarely defined in practice [4,5].

The underlying causes of poor bioinformatics software quality are multifaceted, however two

important factors have been highlighted in the literature: 1) the lack of software engineering

training amongst bioinformaticians [2,3,6–11]; and 2) the fact that research groups have

limited time and money to spend on software quality assurance [10,12–15]. As a result many

bad practices are recurrently observed in the field. Lack of code documentation and user

support makes tools hard to install, understand and use. Limited or non-existent testing can

result in unreliable and buggy behaviour. A high-degree of coupling with the local computing

environment and software dependencies impedes portability. The consequences of poor

5

quality software can have a significant impact on scientific outcomes. Substantial amounts of

users' time can be wasted in trying to get programs to work, scientific methods can be

difficult to reproduce, and in the worst-case, scientific results can be invalid due to program

errors or incorrect usage [3,7,8,10,12,13,16,17].

The abovementioned problems are well known and have prompted remedial action in a

number of areas. Activities to increase software development training amongst scientists are

under way, the most notable examples being the highly successful Software Carpentry and

Data Carpentry workshops [2,3]. Additionally, there are many useful recommendations in the

literature offering practical advice for beginners [9,12,16,18] including specific advice for

biologists new to programming [19]. Significant efforts have also been made in producing

software package collections where best-practice guidelines and curation provide minimum

standards of software quality, such as Bioconductor for R [20], and Bioconda for

bioinformatics command-line tools [21], to name two prominent examples. Increasing the

resources available for scientific software development remains a complex challenge. The

Software Sustainability Institute in the UK demonstrates one successful model where pooled

research funding enables the provision of consultancy, training and advocacy for scientific

software development on a national level [22].

In this work we adopt a pragmatic approach to improving bioinformatics software quality that

is summarised by Rule 7 in Carey and Papin's Ten simple rules for biologists learning to

program: "develop good habits early on" [19]. The idea is that new bioinformatics tools

should be started by copying and modifying a well-written existing example. This allows

bioinformaticians to get started quickly on solving the crux of their problem, but also ensures

that all the ingredients of good programming style and functionality are present from the

beginning. Based on this concept we have developed a tool called Bionitio that automates

the process of starting new bioinformatics software projects with recommended software

best-practices built-in. With a single command the user can create a new well-structured

6

project in one of (currently) twelve programming languages. The resulting software is

functional, carrying out a prototypical bioinformatics task, and thus serves as both a working

example and a template for building new tools. It is expected that users will incrementally

modify this program to ultimately satisfy the requirements of their task at hand. The key point

is that they are building on solid foundations, and are therefore more likely to adopt good

practices throughout the project because a lot of the mundane-but-important boilerplate is

already in place. Specifically, every new Bionitio-created project includes command line

argument parsing, error handling, progress logging, defined exit status values, a test suite, a

version number, standardised building and packaging, user documentation, code

documentation, a standard open-source software license, and software revision control. In

this paper we describe the design and implementation of Bionitio and demonstrate how it

can be used to quickly start new bioinformatics projects.

The closest related work to Bionitio is the Cookiecutter project [23]. It also takes advantage

of the templating approach for starting new software projects, but it is targeted at a different

audience. Cookiecutter provides a more general-purpose templating system that is best

suited to starting new software systems in specific programming languages, such as the

instantiation of web applications based on particular web framework libraries. Conversely,

Bionitio provides many instances of the same prototypical bioinformatics tool implemented in

different programming languages. While Bionitio could theoretically be implemented on top

of a system such as cookiecutter, we believe that the extra complexity is not warranted and

would be a barrier to understanding for our target audience.

Design and Implementation

Bionitio is designed around two components.

7

The first component is a prototypical bioinformatics tool that has been re-implemented in

(currently) twelve different programming languages. Each implementation of the tool carries

out exactly the same task, and each is stored in its own repository on GitHub underneath the

bionitio-team project. For example, the Python 3 and C++ implementations are found at the

following GitHub URLs respectively:

 https://github.com/bionitio-team/bionitio-python

 https://github.com/bionitio-team/bionitio-cpp

Each of the repositories acts as a self-contained exemplar of how to implement the

prototypical tool in the given programming language, carrying out good programming

practices (e.g. command-line argument parsing) in a language-idiomatic way.

The second component is a "bootstrap" script that automates the process of creating a new

software project based on one of the language-specific repositories. With a single invocation

of the bootstrap script the user can quickly start a new project; all they need to do is specify

a new project name and the programming language to use:

$ bionitio-boot.sh -n newproj -i python

The example above creates a new local repository called "newproj" on the user's computer

by cloning and then renaming the bionitio-python repository. Optionally, the user can also

specify their GitHub username, which will cause the bootstrap script to create and populate a

remote repository on GitHub for the new project. The repository comes with a test-suite,

allowing continuous integration testing to easily be enabled via GitHub's integration with

Travis CI [24]. The overall process carried out by the bootstrap script is illustrated in Figure

1.

8

Figure 1. Overview of the automated process for creating new projects performed by the

Bionitio bootstrap script.

The prototypical bioinformatics tool is intended to be easy to understand and modify.

Therefore it has only minimal functionality; just enough to demonstrate all the key features of

a real bioinformatics command line program without becoming distracted by unnecessary

complexity. In essence, the tool streams input from one or more FASTA files, computes

several simple statistics about each file, and prints a tabulated summary of results on

standard output. For example, the command below illustrates the behaviour of the tool on a

single input FASTA file called "file1.fa" (the $ sign indicates the Unix command line prompt):

$ bionitio file1.fa

FILENAME NUMSEQ TOTAL MIN AVG MAX

file1.fa 5264 3801855 31 722 53540

The output is in tab-delimited format, consisting of a header row, followed by one or more

rows of data, one for each input file. Each data row contains the name of the input file,

followed by the total number of sequences in the file (NUMSEQ), the sum of the length of all

the sequences in the file (TOTAL), followed by the minimum (MIN), average (AVG), and

maximum (MAX) sequence lengths encountered in the file.

Each implementation is self-contained and ready to be installed and executed.

Consequently, Bionitio is an excellent resource for programmer training. However, the main

intended use-case is that Bionitio will be used as the starting point for new projects and we

expect users to rewrite parts of it to carry out their own desired functionality. Given that much

of the boilerplate is already provided, modifying the program should be significantly easier

than starting from scratch.

9

The twelve current implementation languages were chosen to represent the most commonly

used languages in bioinformatics [17] (C, C++, Java, Javascript, Perl, Python, R and Ruby)

but also to provide examples in up-and-coming languages and paradigms (C#, Clojure,

Haskell and Rust). The fact that each instance implements the same prototypical tool

provides important consistency amongst the different instances. It means that they all have

common functionality, they can be easily compared, they can share the same test suite, their

user documentation in the form of a README file can be templated, and the inclusion of

new programming language implementations is straightforward. Over time we hope that new

language implementations will be contributed by the community.

All the components of Bionitio are released under the terms of the MIT license, however we

explicitly grant users permission to choose their own license for derivative works. The

bootstrap script optionally allows the user to choose one of several standard open source

licences for newly created projects (Apache-2.0, BSD-2-Clause, BSD-3-Clause, GPL-2.0,

GPL-3.0 and MIT). If no license is specified the MIT is chosen as the default. The terms of

the license are copied into the LICENSE file in the top level of the repository, and all

references to the license in source files are updated accordingly.

The bootstrap script also accepts optional author name and email address arguments which,

if supplied, are inserted into the source code and documentation files at appropriate places.

Newly created projects are committed to fresh Git [25] repositories. All instances of the word

"bionitio" are replaced with the new project name, including in file paths and file contents,

and all files are checked into a new git repository with a pristine commit history.

In the remainder of this section we outline the main features incorporated into Bionitio's

prototypical tool that facilitate good programming practices and why they are important. In

the following section we demonstrate by example how Bionitio can be used to create a new

software project.

10

Table 1 to appear here [See Additional file 1].

Command line argument parsing

We provide a standard command line interface that follows modern Unix conventions

[26,27], including providing arguments for help (--help) and the program version (--version)

[18,28], and provision of single-dash notation for short argument names and double-dash

notation for long argument names. Most importantly, the help argument causes the program

to display usage information, including a description of each argument and its expected

parameters. Where possible we use standard library code for implementing command-line

argument parsing (Table 1), which tends to simplify the process of adding new arguments

and ensures that user help documentation is generated.

Input and output conventions and progress logging

Bioinformatics tools are often strung together in pipelines. A common UNIX paradigm is that

each tool should "expect the output of every program to become the input to another, as yet

unknown, program" [29]. Consequently, the tool can take input from one or more files or

from the standard input device (stdin), which may be piped from the output from another

program. Similarly, output is written to the standard output device (stdout) in a tab-delimited

format. Additionally, we ensure that error messages are always written to the standard error

device (stderr) [18]).

We provide an optional progress logging facility (--log), providing useful metadata about a

computation that can aid debugging and provenance [11]. Progress logging messages are

written to a specified output file. The log file includes the command line used to execute the

program, and entries indicating which files have been processed so far. Events in the log file

11

are annotated with their date and time of occurrence. Where possible we use standard

library code for the provision of logging services (Table 1), as these easily facilitate

advanced features such as timestamping of log messages, log file roll-over, support for

concurrency, and different levels of logging output (e.g. messages, warnings, errors,

etcetera).

Library code for parsing common bioinformatics file formats

There are several tasks in bioinformatics that are common across analyses. For example,

many tools will need to parse sequence files in FASTA format. Rather than re-write code for

this, it is better to use existing libraries. "Don’t Repeat Yourself" is a maxim that can be

applied at multiple levels when programming [11,12,30]. Millions of lines of high-quality open

source software are freely available on the web. It is typically better to find an established

library or package that solves a problem than to attempt to write one's own routines for well-

established problems [3] and this also improves reusability [10]. We demonstrate this

principle by using existing bioinformatics library code to parse the input files (Table 1). This

also allows Bionitio to demonstrate how non-standard library dependencies can be specified

in the software package description, such as the "setup.py" file for Python that specifies a

dependency on the biopython [31] library.

Defined exit status values

Processes on most operating systems return an integer exit status code upon termination.

The Unix convention is to use zero for success and non-zero for error. Exit status values

provide essential information about the behaviour of executed programs and are relied upon

when programs are called within larger systems, such as bioinformatics pipelines. Such

pipelines can become large and complex and can run for long periods of time, therefore the

likelihood of errors is high. Improper indication of success or failure can have significant

12

consequences for such systems. For example, erroneous reporting of exit status zero, for a

computation that actually failed, can cause a pipeline to continue processing on incomplete

results, yielding unpredictable behaviour, or worse, silent errors. Non-zero exit status values

can also provide useful debugging information by distinguishing different classes of errors.

Bionitio demonstrates good programming style by defining the exit status values as

constants, and provides well-defined exit points in the program, and documents the meaning

of the status values in the README file.

A test suite including unit tests, integration tests, and continuous integration

Software testing enables us to verify that the various components of the program work as

expected, it allows us to modify the codebase while maintaining established functionality,

and provides examples that demonstrate how to use the software along with its expected

behaviour [16].

Bionitio includes examples of both unit tests and integration tests. A unit test runs a single

method in isolation and enables the verification that each method in the implementation

behaves as expected without concern for its extended environment. Where possible we use

unit testing library frameworks appropriate for each programming language because they

offer significant extended functionality over hand-written tests, and can facilitate better output

reporting (Table 1). Integration tests ensure that the program behaves correctly as an entire

entity, with all the components working together. Given that all implementations of Bionitio

are expected to behave in the same way, they all share the same underlying testing data

and automated integration-testing shell script. The README file for the project shows how

the user can run a simple test to ensure that the program is working as expected, which

increases their confidence that it was installed correctly [12].

13

Continuous integration is a software development practice that requires all changes to a

software project’s code base to be integrated, compiled and tested as changes are made.

Travis is an online provider of continuous integration testing that enables automatic

execution of tests whenever changes are committed to a source repository, and is currently

available free to all GitHub users. This benefits software development by enabling any

introduced problems to be identified faster [32], and avoids the introduction of breaking

changes into the code. Each Bionitio implementation includes all the necessary Travis

configuration files and demonstrates how continuous integration can be used to run both the

unit and integration tests at each commit to the GitHub repository. The Bionitio wiki on

GitHub contains detailed instructions about how to enable Travis for newly created projects.

The README file also includes the URL to show the status badge for Travis testing,

providing a quick way for users to see the status of continuous integration testing (for

example, a green icon badge showing successful "build passing").

Version number

Version numbers allow users to track the provenance of their work [11,12,18]. This is

particularly important in science where reproducibility is a primary concern. Bionitio comes

with a clearly defined version number which is defined as a constant in a single place in the

source code, which can be displayed to the user of the program via the --version command

line argument. We do not prescribe a particular versioning scheme to use (e.g. Semantic

Versioning [33]), rather we prefer to let the user decide on the most appropriate mechanism

for their work. Our main objective is that a version number is defined, that it can be easily

discovered by the user, and that it is easy to update and modify in a single place in the

program source code.

Standardised software packaging using programming language specific mechanisms

14

The installation process can be one of the most cumbersome and frustrating parts of using

bioinformatics software, and many tools do not provide much assistance to the user [10].

Difficult to install software reduces reproducibility, is less likely to be used, and can cause

problems with reliability due to differences between the developer and user computing

environments. These problems can be addressed by using standard build tools and software

packaging systems [12]. Such systems can automate the process of ensuring that correct

and complete versions of software dependencies are installed [18], and by following

conventional practice, they allow tools to integrate with the broader software ecosystem and

follow the principle of least surprise [34]. Standard packaging also helps with

containerisation, which is becoming increasingly useful in bioinformatics [35]. Bionitio does

this by adopting the idiomatic package and installation mechanisms for each implementation

language. For example in Python we use Pip, in C we use GNU autotools and make, and in

C++ we use CMake. A full list of the building and packaging systems used in each

implementation is provided in Table 1.

A standard open-source software license

When software is distributed without a license it is generally interpreted to mean that no

permission has been granted from the creators of the software to use, modify, or share it.

This is counterproductive to adoption. A standard open-source license provides minimum

fuss for users and increases the chances that software will be widely used [11], partly

because it removes barriers to widespread access, and partly because it encourages

transparency, reuse and collaboration [16]. It is very common for research centres to install

software on behalf of their users. Unsurprisingly such research centres (and their parent

institutions) tend to be risk averse when it comes to legal matters. A non-standard license is

very likely to require vetting by lawyers, which can be a protracted exercise. Many license

options are available [36]. As mentioned above, new projects started with Bionitio use the

MIT license by default, but the user can choose from a number of standard options. The

15

terms of the license are copied into the LICENSE file in the top level of the repository, and

the name of the license is indicated prominently in the README file, and in source code

files.

Documentation

Software documentation broadly falls into two categories: user documentation that explains

how to install and use the code, and developer documentation that explains how the

program is designed and intended to work. For the intended use case of Bionitio we believe

it is important to strike a balance between the extensiveness of documentation and the effort

required to maintain it. Therefore we adopt pragmatic recommendations from the literature

that offer a good compromise between cost and functionality.

For user documentation we provide two critical components: a README file that appears at

the top level of the repository, and comprehensive command line usage output when via the

--help argument [18,28,32] as discussed above. The README file includes a program

description, dependencies, installation instructions, inputs and outputs, example usage, and

licensing information [12,37]. To ease the burden of adding new implementations of Bionitio,

and to ensure consistency across current implementations, we build each README file from

a template, such that common parts of the documentation are shared, and language-specific

details (such as installation instructions) can be instantiated as needed.

Good developer documentation tries to explain the reasoning behind the code rather than

recapitulating its operations in text [3], and can improve code readability, usability and

debugging [28]. In Bionitio we adopt the following conventions in each implementation. Every

source code file begins with header documentation that contains at least the following

information: the name of the module, a brief description of its purpose, copyright information

(author names and date of creation), license information, and a maintainer email address, a

16

concise summary of the main components and processes undertaken in the module. Author

names, creation dates, license name and maintainer email address can be automatically

populated by the bootstrap script. Every non-trivial component of code (such as type

definitions and procedures) are accompanied by a brief description of the purpose of the

component, plus descriptions of the arguments and results of methods, including any

conditions that are assumed to uphold.

Revision control

Software revision control provides a systematic way to manage software updates, allowing

multiple branches of development to be maintained in parallel, and provides a critical means

of coordinating groups of developers [11,12,32]. Modern revision control systems such as

Git [25] provide flexible and scalable modes of collaboration, supporting individual

programmers all the way up to large —- and potentially geographically distributed —- teams.

The collaborative advantages of Git are complemented by the GitHub code hosting web

application [38], currently the most popular repository for bioinformatics code [17]. GitHub

adds issue tracking, documentation publishing, lightweight release management, integration

with external tools such as continuous integration testing, and perhaps most importantly, an

easy-to-use web interface for source browsing and discovery. Bionitio takes advantage of Git

and GitHub in two ways. Firstly, the Bionitio project itself is hosted on GitHub, including each

of the twelve language-specific implementation of our prototypical bioinformatics tool. The

bootstrap script creates new projects by cloning from GitHub, and therefore GitHub acts as

our web-accessible content management system. Where possible, common features

amongst the implementations, such as testing data, are shared via Git submodules, avoiding

repetition. Secondly, the bootstrap script makes it easy for users to create new GitHub-

hosted projects by optionally automating the initialisation and population of new repositories

via the GitHub API. This saves the user’s time, encourages the use of revision control from

the start of the project, and facilitates sharing the code with collaborators.

17

Recommended programming conventions

Each implementation of the Bionitio prototypical bioinformatics tool aims to follow the

programming conventions of the implementation language. This includes the adoption of

standard tools and libraries as well as adhering to programming style guidelines, such as

PEP 8 in Python. By following these practices we enhance integration with the language

ecosystem, avoid common pitfalls, and encourage contributions from external developers

[32,39]. Where possible, we have adopted automated code formatting tools to ensure that

we adhere to recommended style, and static analysis tools to identify likely infelicities and

possible sources of error. A full list of the code formatting and static analysis tools used in

each implementation is provided in Table 1.

Methods

In this section we demonstrate how to create a new bioinformatics software project using the

Bionitio bootstrap script. In order to follow this process the user requires a GitHub account,

and installation of Git on their local computer.

Step 1: choose a programming language, project name, and software license

The Bionitio prototypical bioinformatics tool is currently implemented in twelve programming

languages: C, C++, C#, Clojure, Java, Javascript, Haskell, Perl5, Python, R, Ruby, or Rust.

The user must choose which of these languages they want to use for their new project. They

must also choose a new name for their project. Optionally, the user may also choose an

open source license for their code. The current available options are Apache-2.0, BSD-2-

Clause, BSD-3-Clause, GPL-2.0, GPL-3.0 and MIT. If no license is specified the MIT license

is selected by default. In this example we will assume that Python is chosen as the

18

implementation language, the project name is "newproj", and the BSD-3-Clause license is

desired.

Step 2: run the bootstrap script to create a new software repository

The Bionitio bootstrap script is a BASH shell script that automates the process of creating

new projects. In principle, if Bionitio is already installed on the user's computer, then the

bootstrap script can be run like so:

$ bionitio-boot.sh -i python -n newproj -c BSD-3-Clause

A user may find it inconvenient to have Bionitio installed just to run the bootstrap script,

therefore they may instead prefer to use Curl [40] to simplify the process, by downloading

the script directly from GitHub before running it locally:

$ URL=https://raw.githubusercontent.com/\

bionitio-team/bionitio/master/boot/bionitio-boot.sh

$ curl -sSf $URL | bash -s -- -i python -n newproj -c BSD-3-Clause

The user may optionally specify an author name and email address, which will be substituted

for placeholders in the source code and documentation at appropriate places:

$ bionitio-boot.sh -i python -n newproj -c BSD-3-Clause \

-a "Example Author" -e example.email@institute.org

Finally, the user may specify a GitHub username. In this circumstance the bootstrap script

will create a new remote repository under the specified project name on GitHub and push

the project to that repository:

19

$ bionitio-boot.sh -i python -n newproj -c BSD-3-Clause \

-a "Example Author" -e example.email@institute.org -g example_github_user

Step 3: run the test suite, and optionally setup continuous integration testing

Each new repository created by the bootstrap script contains a testing directory called

"functional_tests". Within that directory is an automated testing shell script called (in this

example) "newproj-test.sh" and a sub-directory of test data and corresponding expected

outputs. The test script can be run like so:

$ newproj-test.sh -p newproj -d test_data

The test script reports how many tests passed and failed, and an optional -v (to enable

verbose mode) will cause it to report more details about each test case that is run. Obviously

the test cases are specific to the expected behaviour of the prototypical bioinformatics tool

implemented by Bionitio. It is expected that the user will replace these tests to suit the

requirements of their new project. Despite this, the user will benefit from much of the testing

infrastructure provided by the script.

If the user has created a remote repository for their project on GitHub they can quickly

enable continuous integration testing via Travis CI. Each new project created by Bionitio

includes the necessary Travis configuration files that are needed to install the prototypical

bioinformatics tool and run the integration and unit test scripts.

From this point onwards we expect that the user will go on to modify the program in order to

carry out their intended task. This includes changing the code of the program itself, updating

library dependencies, and importantly, adding appropriate test cases.

20

Conclusions

Software development is a complex task, involving many concepts and processes that can

be daunting for beginners. Many bioinformaticians are not trained in software engineering,

and research-oriented projects have limited budgets for quality assurance. The results-

driven focus of science means that many important non-functional software requirements are

often overlooked. Unfortunately these factors mean that shortcuts are often taken in name of

making something "that works", leading to a proliferation of lower-quality bioinformatics tools.

Bionitio takes a pragmatic approach to addressing this problem. Our ambition is to help

beginner and intermediate bioinformaticians develop good habits early on. We aim to

achieve this by automating much of the drudgery involved in setting up new projects by

providing a simple working example that has the necessary boilerplate in place. By providing

a fast and simple way to start new projects from solid foundations we believe that good

practices are more likely to be adopted. Additionally, by providing complete working

examples of a simple prototypical bioinformatics tool in many different languages, Bionitio

acts as a kind of "Rosetta Stone", and is therefore an excellent vehicle for education and

skills transfer.

The challenges faced by the bioinformatics and science communities in building better

quality software are well known, and there is no shortage of practical recommendations to be

found in the literature. In this paper we have demonstrated that Bionitio can help

bioinformaticians put those recommendations into practice quickly and easily, and therefore

it both demonstrates and facilitates the development of better quality command line tools.

Availability of supporting source code and

requirements

21

● Project name: Bionitio

● Project home page: https://github.com/bionitio-team/bionitio

● Operating system(s): Any POSIX-like system.

● Programming language: Users can choose from: C, C++, C#, Clojure, Java,

Javascript, Haskell, Perl, Python, R, Ruby, Rust

● Other requirements: BASH, curl and git are required for bionitio-boot.sh

● License: MIT

Declarations

Ethics approval and consent to participate: Not applicable

Consent for publication: Not applicable

Competing interests: The authors declare that they have no competing interests.

Funding: BP is supported by a Victorian Health and Medical Research Fellowship. HD

is supported by an Australian Government Research Training Program (RTP) Scholarship,

an Australian Genomics Health Alliance top up scholarship and a Murdoch Children’s

Research Institute top up scholarship. AL is supported by an Australian Government

Research Training Program (RTP) Scholarship. PG is supported by an Australian

Government Research Training Program (RTP) Scholarship.

Authors' contributions: TS, AL, HD and BP conceived of the project. All authors

contributed to the design, implementation, testing and documentation of Bionitio. AS, CS,

AL, HD, PG and BP contributed to manuscript drafting. All authors contributed to manuscript

proofreading and final editing.

Acknowledgements: The authors would like to thank Melbourne Bioinformatics for

providing computing resources for the development of Bionitio, and to the many users of the

tool who have provided feedback about its use.

https://github.com/bionitio-team/bionitio

22

References

1. Baker M. 1,500 scientists lift the lid on reproducibility. Nature. 2016;533:452–4.

2. Wilson G. Software Carpentry: lessons learned. F1000Research [Internet]. 2016;3.

Available from: https://doi.org/10.12688/f1000research.3-62.v2

3. Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, et al. Best practices

for scientific computing. PLoS Biol. 2014;12:e1001745.

4. Verma D, Gesell J, Siy H, Zand M. Lack of Software Engineering Practices in the

Development of Bioinformatics Software.

5. Segal J, Morris C. Developing Scientific Software. IEEE Softw. 2008;25:18–20.

6. Hannay JE, MacLeod C, Singer J, Langtangen HP, Pfahl D, Wilson G. How Do Scientists

Develop and Use Scientific Software? Proceedings of the 2009 ICSE Workshop on Software

Engineering for Computational Science and Engineering. Washington, DC, USA: IEEE

Computer Society; 2009. p. 1–8.

7. Merali Z. Error: why scientific programming does not compute. Nature. 2010;467:775–7.

8. Joppa LN, McInerny G, Harper R, Salido L, Takeda K, O’Hara K, et al. Troubling Trends in

Scientific Software Use. Science. American Association for the Advancement of Science;

2013;340:814–5.

9. Baxter SM, Day SW, Fetrow JS, Reisinger SJ. Scientific software development is not an

oxymoron. PLoS Comput Biol. journals.plos.org; 2006;2:e87.

10. Lawlor B, Walsh P. Engineering bioinformatics: building reliability, performance and

productivity into bioinformatics software. Bioengineered. 2015;6:193–203.

11. List M, Ebert P, Albrecht F. Ten Simple Rules for Developing Usable Software in

https://doi.org/10.12688/f1000research.3-62.v2

23

Computational Biology. PLoS Comput Biol. 2017;13:e1005265.

12. Taschuk M, Wilson G. Ten simple rules for making research software more robust. PLoS

Comput Biol. 2017;13:e1005412.

13. Prins P, de Ligt J, Tarasov A, Jansen RC, Cuppen E, Bourne PE. Toward effective

software solutions for big biology. Nat Biotechnol. 2015;33:686–7.

14. Umarji M, Seaman C, Gunes Koru A, Liu H. Software Engineering Education for

Bioinformatics [Internet]. 2009 22nd Conference on Software Engineering Education and

Training. 2009. Available from: http://dx.doi.org/10.1109/cseet.2009.44

15. Howison J, Deelman E, McLennan MJ, Ferreira da Silva R, Herbsleb JD. Understanding

the scientific software ecosystem and its impact: Current and future measures. Res Eval.

Narnia; 2015;24:454–70.

16. Leprevost FV, Barbosa VC. On best practices in the development of bioinformatics

software. Frontiers in [Internet]. journal.frontiersin.org; 2014; Available from:

http://journal.frontiersin.org/article/10.3389/fgene.2014.00199

17. Russell PH, Johnson RL, Ananthan S, Harnke B, Carlson NE. A large-scale analysis of

bioinformatics code on GitHub. PLoS One. 2018;13:e0205898.

18. Seemann T. Ten recommendations for creating usable bioinformatics command line

software. Gigascience. 2013;2:15.

19. Carey MA, Papin JA. Ten simple rules for biologists learning to program. PLoS Comput

Biol. 2018;14:e1005871.

20. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al.

Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods.

2015;12:115–21.

http://dx.doi.org/10.1109/cseet.2009.44
http://journal.frontiersin.org/article/10.3389/fgene.2014.00199

24

21. Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, et al. Bioconda:

sustainable and comprehensive software distribution for the life sciences. Nat Methods.

2018;15:475–6.

22. Crouch S, Hong NC, Hettrick S, Jackson M, Pawlik A, Sufi S, et al. The Software

Sustainability Institute: Changing Research Software Attitudes and Practices. Comput Sci

Eng. IEEE Computer Society; 2013;15:74–80.

23. Greenfeld AR. cookiecutter [Internet]. Github; [cited 2019 Mar 21]. Available from:

https://github.com/audreyr/cookiecutter

24. Travis CI - Test and Deploy Your Code with Confidence [Internet]. [cited 2019 Mar 21].

Available from: https://travis-ci.org/

25. The Git Project. Git [Internet]. Git. [cited 2019 Apr 14]. Available from: https://git-

scm.com/

26. Utility Conventions [Internet]. [cited 2019 Mar 4]. Available from:

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap12.html

27. GNU Coding Standards [Internet]. [cited 2019 Mar 4]. Available from:

https://www.gnu.org/prep/standards/standards.html

28. Lee BD. Ten simple rules for documenting scientific software. PLoS Comput Biol.

2018;14:e1006561.

29. McIlroy MD, Pinson EN, Tague BA. UNIX Time-Sharing System: Foreword. Bell System

Technical Journal. 1978;57:1899–904.

30. Hunt A, Thomas D. The Pragmatic Programmer: From Journeyman to Master. 1 edition.

Addison-Wesley Professional; 1999.

31. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: freely

https://github.com/audreyr/cookiecutter
https://travis-ci.org/
https://git-scm.com/
https://git-scm.com/
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap12.html
https://www.gnu.org/prep/standards/standards.html

25

available Python tools for computational molecular biology and bioinformatics.

Bioinformatics. 2009;25:1422–3.

32. Karimzadeh M, Hoffman MM. Top considerations for creating bioinformatics software

documentation. Brief Bioinform [Internet]. 2017; Available from:

http://dx.doi.org/10.1093/bib/bbw134

33. Preston-Werner T. Semantic Versioning 2.0.0 [Internet]. Semantic Versioning. [cited

2019 Mar 4]. Available from: https://semver.org/spec/v2.0.0.html

34. Applying the Rule of Least Surprise [Internet]. [cited 2019 Mar 4]. Available from:

http://www.faqs.org/docs/artu/ch11s01.html

35. Gruening B, Sallou O, Moreno P, da Veiga Leprevost F, Ménager H, Søndergaard D, et

al. Recommendations for the packaging and containerizing of bioinformatics software.

F1000Res [Internet]. 2019 [cited 2019 Mar 25];7. Available from:

https://f1000research.com/articles/7-742/v2/pdf

36. Choose an open source license [Internet]. Choose a License. [cited 2019 Mar 4].

Available from: https://choosealicense.com/

37. Johnson M. Building a Better ReadMe. Technical Communication. Society for Technical

Communication; 1997;44:28–36.

38. Perez-Riverol Y, Gatto L, Wang R, Sachsenberg T, Uszkoreit J, Leprevost F da V, et al.

Ten Simple Rules for Taking Advantage of Git and GitHub. PLoS Comput Biol.

2016;12:e1004947.

39. Glass RL. Facts and Fallacies of Software Engineering. Addison-Wesley Professional;

2003.

40. The Curl developers. Curl [Internet]. Curl: command line tool and library for transferring

data with URLs. [cited 2019 Apr 14]. Available from: https://curl.haxx.se/

http://dx.doi.org/10.1093/bib/bbw134
https://semver.org/spec/v2.0.0.html
http://www.faqs.org/docs/artu/ch11s01.html
https://f1000research.com/articles/7-742/v2/pdf
https://choosealicense.com/
https://curl.haxx.se/

26

Additional Files

File name: Additional file 1

File format: Microsoft Word

Title of data: Table 1

Description of data: Contents of Table 1 to be included in manuscript where indicated.

language build/deploy FASTA reading command line
argument parsing

unit testing logging static analysis code format

C make kseq getopt assert custom lint clang-format

C++ cmake Seqan boost::program_optio
ns

catch boost::log cppcheck clang-format

C# dotnet .Net Bio Microsoft.Extensions.
CommandLineUtils

Microsoft.Visua
lStudio.TestTo
ols.UnitTesting

Serilog N/A N/A

Clojure lieningen Bioclojure clojure.tools.cli clojure.test timbre Eastwood cljfmt

Java maven biojava Apache Commons junit custom checkstyle checkstyle

Javascript node fasta-parser commander mocha winston N/A standard

Haskell stack BioHaskell optparse-applicative hspec hslogger hlint N/A

Perl N/A BioPerl Getopt::ArgParese Test::More Log::Log4perl perlcritic perltidy

Python pip biopython argparse unittest logging pylint N/A

R R seqinr optparse testthat logging lintr N/A

Ruby gem bioruby optparse Test::Unit logger N/A N/A

Rust cargo bio::io::fasta argparse native test
feature of Rust

log, log4rs N/A rustfmt

Table 1. Standard libraries and tools employed by each implementation of Bionitio. Instances where no appropriate option was available are

marked with N/A.

Table Click here to download Table Additional file 1.docx

https://www.editorialmanager.com/giga/download.aspx?id=64886&guid=41640e70-8e3f-4fa7-abaf-c82828f308c2&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=64886&guid=41640e70-8e3f-4fa7-abaf-c82828f308c2&scheme=1

Figure Click here to download Figure figure1.png

https://www.editorialmanager.com/giga/download.aspx?id=64885&guid=e5c8b5d2-4e2a-4091-a0b6-5dd6d8869cd1&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=64885&guid=e5c8b5d2-4e2a-4091-a0b6-5dd6d8869cd1&scheme=1

29 April 2019

To the Editor-in-Chief and Executive Editor, GigaScience,

Dear Dr Laurie Goodman and Dr Scott Edmunds,

Much has been written in recent literature about the essential role played by scientific software systems

and problems associated with highly variable code quality. This is especially apparent in Bioinformatics,

where rapid technological advancement in Life Sciences drives the continual creation of new tools, often

by individuals without extensive training in software development. Issues in software quality can affect

science outcomes, where defects can have serious consequences such as: erroneous or inaccurate

results; poor scalability and inefficient use of resources; lack of reproducibility; and poor usability,

adaptability and interoperability.

With the ever-increasing importance of digital data-driven science it is critical that efforts are made to

improve scientific code quality in cost-effective ways that are accessible to individuals from all technical

backgrounds. Important steps are already being made towards practical solutions, including: professional

training courses exemplified by Software Carpentry; recommendation articles published in key journals

such as GigaScience that offer pragmatic best-practice advice to beginners; the evolution of research-

specialist roles within academic institutions; and improved recognition of open-source collaborative

software development.

Despite these positive advances, the barrier to entry in scientific software development remains high for

beginners, especially if they wish to adopt good practices from the outset of a project. Considerable

burden is involved in setting up a new project, and important factors such as packaging, testing,

documentation, and revision control are often overlooked.

To address this problem we have developed Bionitio (https://github.com/bionitio-team/bionitio), a tool that

automates the process of starting new bioinformatics software projects following recommended best-

practices. New projects can be quickly and conveniently created in one of twelve different popular

programming languages by a single command, and within seconds the user will have a well-structured

functional template project from which to build their own new tool. Bionitio is aimed at beginner and

intermediate users and has proven to be an excellent vehicle for professional training, as demonstrated

recently when it was used as the basis for a popular workshop hosted at the Australian Bioinformatics

and Computational Biology Society (ABACBS) annual conference in 2018

(https://www.abacbs.org/conference2018). Expert users can also benefit from Bionitio's ability to rapidly

start new projects.

We thank you for accepting our pre-submission enquiry on 1 March 2019, and we hereby submit a

Technical Note describing Bionitio, which we believe will be of great interest to the audience of

GigaScience.

Yours faithfully,

Assoc. Prof. Bernard Pope

Lead Bioinformatician for Cancer and Clinical Bioinformatics

Melbourne Bioinformatics

The University of Melbourne, Australia

On behalf of the authors of Bionitio.

Cover Letter Click here to download Personal Cover cover_letter.docx

https://github.com/bionitio-team/bionitio
https://www.abacbs.org/conference2018
https://www.editorialmanager.com/giga/download.aspx?id=64887&guid=a852ad07-cac9-452e-9127-be48b63a3698&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=64887&guid=a852ad07-cac9-452e-9127-be48b63a3698&scheme=1

